
Running EAC in Wine is currently the only way to get 100% logs on Linux. Ripping with a
virtual drive, from a virtual machine (such as VirtualBox or VMWare) will not produce verifiable
logs. Any torrents ripped from inside a virtual machine will have their logs removed from the site,
and the torrent will be equivalent to logless. (An exception applies if using a USB disc drive through
a virtual machine, as these have their names correctly displayed on logs. Please double check such
logs before uploading though, and also make sure that EAC is set up accordingly to the wiki articles
linked at the bottom of the page to avoid deductions for incorrect rip settings.)

These directions should work under any flavor of Linux that runs Wine. This guide was
written with Debian testing in mind, but the only things which should differ between
distributions are the package manager commands - please adapt them to the distro
you're running.

The first step is to install Wine.
It is highly recommended to use Wine 4.6 or newer, since it is the first version which
enables plugin support in EAC. This will allow you to produce logs which include the
CUETools report for your rip.

You should use your distribution's packages if it provides them. However, the Wine project provides
builds for a few distributions, so you may choose to use their builds if the package in your
distribution is older or unusable for any other reasons. At the time of writing, Debian provides
version 4.0 in their repositories - which is a little too old for this particular use case due to the
reason mentioned above. Luckily, installing the package from the Wine repositories can be done
with just a few commands:

How to Install and Setup EAC
to Make Flawless Rips on
Linux

REDACTED.ch Wiki article imported on 15-02-2023

Install Wine

Via your distribution's package manager

https://wiki.winehq.org/Download
https://wiki.winehq.org/Download

Visit the Wine project's page concerning their Debian builds if something doesn't work properly.

If, for some reason, you cannot use the newer versions, consider making a custom Wine build of an
older version with a patch enabling EAC's plugin support. This is a slightly adapted version of
what's available on the Wine wiki about making builds on Debian. Keep in mind that due to
differences in how distributions handle the issue of multiple architecture libraries, this part of the
guide is meant exclusively for Debian.

First of all, download the needed chroot machinery from the repositories and edit the configuration
file :

Here are the contents of mine :

 wget
https://download.opensuse.org/repositories/Emulators:/Wine:/Debian/Debian_Testing_standard/amd64/libfaudio0
_19.04-0~buster_amd64.deb

 wget
https://download.opensuse.org/repositories/Emulators:/Wine:/Debian/Debian_Testing_standard/i386/libfaudio0_1
9.04-0~buster_i386.deb

 sudo dpkg --add-architecture i386

 sudo dpkg -i libfaudio0_19.04-0~buster_amd64.deb

 sudo dpkg -i libfaudio0_19.04-0~buster_i386.deb

 wget -O - https://dl.winehq.org/wine-builds/winehq.key | sudo apt-key add

 echo 'deb https://dl.winehq.org/wine-builds/debian/ testing main' | sudo tee -a /etc/apt/sources.list >/dev/null

 sudo apt update

 sudo apt install --install-recommends winehq-devel winetricks

Making a custom Wine build

 sudo apt-get install schroot debootstrap

 sudo nano /etc/schroot/chroot.d/debian_i386.conf

https://wiki.winehq.org/Debian
https://wiki.winehq.org/Building_Wine#Chroot

Prepare the chroot so you can download the packages and enter it :

You are now logged in as root inside the 32-bit chroot.

Those commands will make sure you have the stuff that you need to compile wine in the 32-bit
chroot, as well as build dependencies of the libwine package provided in the repositories so Wine
compiles with all the optional features that you might or might not need. You can now re-enter the
chroot as a regular user to perform the build :

[debian_i386]
description=Debian Unstable 32-Bit
personality=linux32
directory=/srv/chroot/debian_i386
root-users=foobar
type=directory
users=foobar

 sudo mkdir -p /srv/chroot/debian_i386

 sudo debootstrap --variant=buildd --arch=i386 testing /srv/chroot/debian_i386 http://ftp.debian.org/debian

 sudo cp /etc/apt/sources.list /srv/chroot/debian_i386/etc/apt/

 schroot -c debian_i386 -u root

 apt-get update

 apt-get install build-essential wget

 apt-get build-dep libwine

exit

 schroot -c debian_i386

 cd /home/foobar # this will enter /home/foobar in your host system

 wget https://dl.winehq.org/wine/source/4.0/wine-4.0.tar.xz

 tar xf wine-4.0.tar.xz

And voila! You're back to your regular system and the 32-bit Wine installation is now available in
/home/foobar/wine-install. You still need to install the 32-bit support packages on your host system
in order to actually run it, though :

This will install the libwine package and all its dependencies, which means that you end up with the
same set of packages that Wine was compiled against in your 32-bit chroot. Remember to add the
location into your PATH so the Wine binaries can be easily called from the shell and found by other
tools :

Wine needs the optical drives to be referenced in /etc/fstab in other to see them. The drives
themselves don't need to be mounted, but the mount points do need to exist. Your optical drive's
device node is most probably /dev/sr0 if you only have one drive - if you have multiple, list the
entries inside /dev/disk/by-id to find out which drive maps to which device node :

 wget -O wine-sxs-support.patch https://source.winehq.org/patches/data/150654

 cd wine-4.0

 patch -p1 -i ../wine-sxs-support.patch

 mkdir -p /home/foobar/wine-install

 ./configure --prefix=/home/foobar/wine-install

 make # optionally add -jN where N is the number of cores

 make install

exit

 sudo dpkg --add-architecture i386 # in case you haven't done this before

 sudo apt-get install libwine:i386

 export PATH="/home/foobar/wine-install/bin:$PATH"

Let Wine see your optical drives

 $ ll /dev/disk/by-id/*

 Now, create an entry inside /etc/fstab for each drive that you want to use, changing the device
path (first token) and the mount point (second token) appropriately :

 Don't forget to actually create the mount points that /etc/fstab now references :

You will also need to give optical drive read/write permissions to the user you're running Wine as.
Linux distributions usually give these permissions to particular groups - in order to see which group
you need to be a member of, check the owner of the device node representing the device that you
want to use :

As you can see, Debian gives R/W permissions to these device nodes to members of the "cdrom"
group. It's thus enough to add your user ("foobar" in this example) to this group :

Wine operates in what it calls "Wine prefixes". Each prefix is essentially a separate Windows
installation as far as Windows programs are concerned. It is usually recommended to have a
separate prefix for every application installed, since this allows to isolate all the application-
dependent workarounds which might be necessary, and make sure that they won't be influenced
by any other applications installed into this particular prefix.

Making a Wine prefix boils down to creating a separate directory and setting two environment
variables :

 lrwxrwxrwx 1 root root 9 Apr 6 23:08 /dev/disk/by-id/ata-LITE-ON_LTR-52327S -> ../../sr1

 lrwxrwxrwx 1 root root 9 Mar 27 21:29 /dev/disk/by-id/ata-TSSTcorpCD_DVDW_SH-W162C -> ../../sr0

 echo '/dev/sr0 /mnt/drive0 auto ro,user,noauto,unhide 0 0' | sudo tee -a /etc/fstab >/dev/null

 sudo mkdir -p /mnt/drive0

 $ ll /dev/sr*

 brw-rw---- 1 root cdrom 11, 0 Mar 27 21:29 /dev/sr0

 brw-rw---- 1 root cdrom 11, 1 Apr 6 23:08 /dev/sr1

 sudo gpasswd -a foobar cdrom

Make an exclusive EAC prefix

 mkdir /home/foobar/.eac-prefix

Remember to set the WINEPREFIX variable every time you want to run applications from
that prefix, or modify it in any way. If you fail to do that, Wine will run with the default prefix of
$HOME/.wine, which might contain other applications and settings which could possibly conflict
with EAC. The WINEARCH variable is only needed for the first run inside a given prefix in order to
set it up as 32-bit only due to .NET 2.0 bugs occurring in 64-bit prefixes.

You should now be able to run

and see the Wine configuration window. First of all, change the Windows version to 7 in the bottom
part of the window. Then, click on the "Drives" tab, and click "Autodetect". The table should fill with
all drives Wine could find referenced in /etc/fstab : if you've done everything properly, you should
also see your optical drives' mount points with Windows drive letters assigned to them.
If you want to, you can remove the drive letters referring to mount points which aren't your optical
drives (except drive C referring to the virtual "drive C" inside the EAC prefix), but it's not necessary.

Here's how the window should look like if everything's OK (do note that the mount point in the
screenshot is /media/cdrom0, expect to see the one you've used instead) :

 export WINEPREFIX=/home/foobar/.eac-prefix

 export WINEARCH=win32

Configure the EAC prefix

winecfg

EAC does not work with the alternative .NET implementation called Mono, so we're going to use the
helper script called winetricks, which allows installing additional components produced by Microsoft
that provide functionality not yet implemented in Wine. In this particular case, this is necessary in
order to install the Microsoft .NET 2.0 Framework package.

Winetricks might be provided by your distribution's packages, but it can just as easily be
downloaded straight from Github :

 Then, tell the script to download the .NET 2.0 runtime, .NET 4.0 runtime and Visual C++ 2008
Redist. :

Install .NET 2.0, .NET 4.0 and Visual C++
2008

 wget https://raw.githubusercontent.com/Winetricks/winetricks/master/src/winetricks

 chmod +x winetricks

 ./winetricks dotnet20

https://wiki.grey.fail/uploads/images/gallery/2023-02/prefix-drives.png
https://wiki.winehq.org/Winetricks

Click through the installer's dialogs until it finishes.

Newer Wine versions have a modified implementation of one of the DLLs called mscorwks.
Unfortunately, it causes issues when running some of the plugins available in EAC. It is thus
necessary to disable the Wine implementation and always use the one installed by the dotnet20
package. This can be done in running

again and going to the "Libraries" tab, typing "mscorwks" to the text field, and clicking "Add". The
tab should look like this after all that :

 ./winetricks dotnet40

 ./winetricks vcrun2008

Activate the DLL override

winecfg

Download and install EAC

https://wiki.grey.fail/uploads/images/gallery/2023-02/dll-libraries.png

The latest EAC version at the time of writing is 1.3, and can be downloaded from the official
website. After downloading the installer, run it directly with :

Click through the installer's dialogs until it finishes. Uncheck "Run Exact Audio Copy" in the last
dialog, though, since there is still one thing before actually running EAC.

EAC is run from inside the Microsoft.VC80.CRT directory inside its installation directory via the
Windows shortcut, which is most probably done in order for it to load the appropriate runtime DLL.
This behaviour should be preserved when running EAC via Wine - I use the following Bash function
to do just that :

This assumes that you've installed EAC to its default directory and the EAC prefix is the same one
as the one used throughout this guide. If you add this function to your .bashrc file, you'll be able to
simply start EAC by running the command "eac" in your shell, which I recommend doing.

 wine eac-1.3.exe

Running EAC

function eac {
 local wineprefix="$HOME/.eac-prefix"
 local eacdir="${wineprefix}/drive_c/Program Files/Exact Audio Copy"
 pushd "${eacdir}/Microsoft.VC80.CRT"
 WINEPREFIX=$wineprefix WINEDEBUG=-all wine "${eacdir}/EAC.exe"
 popd
}

Revision #4
Created 15 February 2023 16:02:07 by Chris
Updated 15 February 2023 16:39:38 by Chris

http://www.exactaudiocopy.de/en/index.php/resources/download/
http://www.exactaudiocopy.de/en/index.php/resources/download/

